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ABSTRACT 
 
This study uses wavelet analysis to examine the price and volatility spillovers between the 
U.S. and Indian stock markets. The empirical results suggest that there is price spillover 
effect from the U.S. market to its Indian counterpart during the period September 1998 – 
August 2003. However, the volatility spillovers, between these two stock markets, do not 
have any empirical support. (JEL Code: C3, G14). 
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1. INTRODUCTION  

In recent years the stock markets across the nations have realized the increasing degree of 

interdependency, thanks to liberalized capital flows, integration of global economy, cross 

listing of stocks in different markets and rapid development of communication 

technology and computerized trading system. This has encouraged the academics as well 

as practitioners to study the interlinkage or spillover among markets with a greater and 

renewed interest than ever before. Given the degree of openness to trade and investment, 

it is a well-accepted fact that the national markets are inter-related and increasingly 

global (John et. al., 1995). Thus, understanding the behavior and dynamics of spillover is 

essential for investors, portfolio managers as well as policy makers given its implications 

for pricing of securities in the global market, international portfolio diversification and 

hedging strategies and financial market stability. In particular, deregulation and market 

liberalization measures accelerated the growth of Indian capital market by attracting 

funds from the FIIs and Indian companies which are also raising funds abroad through 

external commercial borrowings and cross-listing themselves in developed markets. This 

trend is   well evident between the U.S. and Indian capital markets. At present 10 Indian 

companies have issued American Deposit Receipts (ADRs) and are cross-listed in the 

U.S. exchanges. Moreover, as per the Economic Survey 2003-04, the U.S. is the largest 

trading partner of India having 11.6 percentage of total trade during 2003-04 and the 

second largest FDI provider to India during 2003-04.  

 

 From the perspective of integrated global capital systems; numerous empirical studies 

have been conducted employing some of the popular econometric techniques such as 

Vector Autoregression (VAR), cointegration and the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH).1 However, a careful perusal of these studies 

leads us to arrive at two broad conclusions. First, most of the studies employ statistical 

models which are subject to parametric restrictions and specification error. Second, these 

studies largely examine the relation among the developed markets but a study in the 

                                                           
1 Some of the notable studies include that of Schollhammer and Sand (1985), Goodhart (1988), Eun and 
Sangdal (1989), Furstenberg and Jeon (1989), King and Wadhwani (1990), Hamao et al (1990), 
Arshanapalli  and Doukas (1993), Lin and Ito (1994), Karolyi (1995), Masih and Masish (1997), Baig and 
Goldfajn (1999) Ng (2000), Kumar and Mukhopadaya (2002). 

 



context of developed vis-à-vis developing markets might provide different and useful 

insights. The present study is primarily motivated by the observations made just above 

regarding the past studies and involves a different method to test spillover effects based 

on wavelet analysis. As spillovers are concerned with the transmission of any 

unanticipated shocks or innovations origination from one stock market to other markets, 

one first needs to extract such ‘news’ or ‘innovations’ from stock markets.  And the fine 

scale wavelet coefficients are good at representing the high frequency fluctuations by 

decomposing the time series into various orthogonal components. Thus, the study 

proposes to use reconstructed return series from the finest scale coefficients of discrete 

wavelet transform. The literature in this regard is absolutely scarce with one exception. 

For instance, Lee (2004), using wavelet techniques found strong evidence for price as 

well as volatility spillover effects across international stock markets, in particular, from 

the U.S. stock market to the Korean counterpart but not vice versa.  

 

In addition to the above motivating methodological factor, other features which inspire us 

in examination of the short run dynamics of stock returns and volatility between the 

NASDAQ Composite Index and the BSE Sensex are given below. First, the exchanges do 

not have overlapping trading hours and hence the case of spillover can be clearly 

examined. Second, a quick examination of movements of the BSE Sensex and the 

NASDAQ Composite Index, during the study period under consideration, suggests that 

there exists a substantial degree of interdependence. (see figure 1) Third, official source 

like Reserve Bank of India (RBI) Annual Report (2002-03) states that “Market sentiment 

was also affected by the sharp decline in the major international markets…The BSE 

Sensex declined…major international market indices like the NASDAQ Composite Index 

and the DJIA.” Similarly, RBI Annual Report 2000-01 says, “The stock market remained 

generally subdued … large sell offs in global equity markets, particularly, in new 

economy stocks in the NASDAQ.” With this backdrop, our study makes an attempt to 

implement the wavelet analysis to explore the likely spillover effects between Indian and 

the US stock markets.  

 

(insert figure 1) 

 



 

The remainder of the paper is planned thus; in the next section, we describe the wavelet 

methodology followed by the data used in this study in section III. Section IV presents 

the empirical analysis of the spillover effects between Indian and the US market. Section 

V provides the concluding remarks.  

 

2. WAVELET ANALYSIS 

By design, the usefulness of wavelets is its ability to localize data in time-scale space. At 

high scales (shorter time intervals), the wavelet has a small time support and is thus, 

better able to focus on short lived and strong transients like discontinuities, ruptures and 

singularities. At low scales (longer time intervals), the wavelet's time support is large, 

making it suited for identifying long periodic features. At low scales, the wavelet 

characterizes the data's coarse structure i.e. its long-run trend and pattern. By gradually 

increasing the scale, the wavelet begins to reveal more and more of the data details, 

zooming in on its behavior at a point in time. Wavelet filter provides insight into the 

dynamics of financial time series beyond that of current methodology. It is important to 

realize that financial time series may not need to follow the same relationship as a 

function of time horizon (scale). Hence, a transform that decomposes a process into 

different time horizons is appealing and identifies local and global dynamic properties of 

a process at these time scales.  

 

Wavelet analysis is characterized by a wavelet. A wavelet is a small wave, which has its 

energy concentrated in time to give a tool for the analysis of transient, non-stationary or 

time varying phenomenon. It still has the oscillating wave like characteristic (as Fourier 

analysis) but also has the ability to allow simultaneous time and frequency analysis with a 

flexible mathematical foundation. Readers are referred to Chui (1992) for a thorough 

review of wavelet analysis and Daubechies (1992) for further technical details. The most 

interesting reference for application of wavelets in economics and finance has been 

Gencay et al. (2002). There are two types of wavelets defined on different normalization 

and orthogonalization rules, namely, father wavelets ϕ (scaling function) and mother 

 



wavelets ψ (wavelets). The father wavelet integrates to a constant and the mother wavelet 

integrates to zero:  
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Precisely, father wavelets are used for representing the low frequency, smooth 

components of the data. The mother wavelets extract the high frequency detail 

components of the data. Broadly speaking, father wavelets are used to for representing 

the trend components and the deviations from trend are by mother wavelets. 

 

The wavelets and scaling functions at different scales are given by  
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where 2j is called as the scale parameter or dilation factor and the translation parameter 

2jk refers to the location factor. Here, the larger the index j, the larger the scale parameter 

2j, and hence the functions get shorter and more spread out. Similarly, as the functions 

get wider, the corresponding translation parameter becomes larger.  
 
Given this family of basis functions, any function f(t) in L2(R) can be represented by  

( ) ( ) ( ) ( ) (∑ ∑ )∑ ∑++++= −−
k k k k

kkkJkJkJkJkJkJ tdtdtdtctf ,1,1,1,1,,,, ...... ψψψϕ .      …(3) 

 
The coefficients in the above expansion are given by the projections 
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where the cJ,k are the coefficients for the father wavelets at the maximal scale, 2J, known 

as the “smooth coefficients or scaling coefficients”. The dj,k are the detail coefficients 

obtained from the mother wavelets at all scales from 1 to J, the maximal scale. 
 
Alternatively, f(t) can also be represented as  

 ( ) ( ) ( ) ( ) ( )tDtDtDtCtf JJJ 11 ...++++= −      (6) 

where  and ∑=
k

kJkJJ tCC )(,, φ ∑ ==
k

kjkjJ kjtdD ,....,1),(,, ψ . As each terms in the 

above equation represents components of the signal f(t) at different resolutions, it is 

called a multiresolution decomposition. 
 

The coarsest scale signal CJ(t) represents a coarse scale smooth approximation to the 

signal. Adding the detail signal DJ(t) gives a scale 2J-1 approximation to the signal,CJ-1(t), 

which is a refinement of the coarsest approximation CJ(t). Further refinement can 

sequentially be obtained as: 

( ) ( ) ( ) ( ) ( ) ( )tDDtDtCtDtCtC jJJJjJj ++++=+= −−− ...111 .       …(7) 

 
The collection {CJ, CJ-1, CJ-2, …,C1} provides a set of multiresolution approximations of 

the signal f(t). 

 

3. DATA  

The study makes use of daily data on BSE Sensitive Index and the NASDAQ Composite 

Index for the period of five years. The study spans over a period of September 1998 to 

August 2003, thus involving 1228 and 1250 number of data points for the Sensex and the 

NASDAQ Composite Index respectively2. After matching the daily observations between 

these two stock markets, the number of data points comes down to 1193. Daily open and 

close quotes of the Sensex and the NASDAQ Composite Index have been downloaded 

from www.bseindia.com and www.finance.yahoo.com respectively. The indices 

                                                           
2 These two stock markets are operating in different time zones with different holidays and trading days 
schedules and hence the difference in number of observations. 

 



downloaded are measured in terms of local currency that avoids the problem of exchange 

rate risk.  

 
To study the spillovers on nonsynchronous trading environments, a daily (close-to-close) 

return is divided into a daytime (open-to-close) and an overnight (close (t-1)-to-open) 

returns have been calculated for both the indices such as Hamao et al. (1990), and Lin et 

al. (1994). Since there is a time lag of twelve-and-half hours between the US Eastern 

Standard Time and Indian Standard Time, current day data set for the BSE is juxtaposed 

with the data set for the NASDAQ with one period lag. Thus it is possible to study the 

influence of daytime returns in one market on the overnight return of the other. Notice 

that we also use close-to-close returns to examine spillovers as in Karolyi (1995). So in 

this study, we calculate the returns as follows: 
 
Sensex close returns (SCR) = Log (Sensex close on day t / Sensex close on day t-1)*100    

Sensex overnight returns (SOR) = Log (Sensex open on day t / Sensex close on day t-1)*100 

Sensex daytime returns (SDR) = Log (Sensex close on day t / Sensex open on day t)*100 

NASDAQ close returns (NCR) = Log (NASDAQ close on day t / NASDAQ close on day t-1)*100    

NASDAQ overnight returns (NOR) = Log (NASDAQ open on day t / NASDAQ close on day t-1)*100 

NASDAQ daytime returns (NDR) = Log (NASDAQ close on day t / NASDAQ open on day t)*100 

 
 
Note that these daily rates of returns on a given calendar day may represent returns 

realized over different time intervals depending on holiday and trading day schedules. To 

account for this problem of multiple day returns associated with weekends and holidays, 

we use the dummy variable (discussed later in empirical section). Finally, to examine the 

short-run inter linkages between the US and Indian stock markets, we test the effect of 

the NASDAQ daytime returns and volatility on the Sensex overnight returns and 

volatility respectively. As mentioned earlier, we also gauge the effect of the NASDAQ 

close returns and volatility on the Sensex close returns and volatility.  
 
4. EMPIRICAL ANALYSIS 

Table 1 presents a range of preliminary descriptive statistics for the daily stock index 

returns of the BSE Sensitive Index and the NASDAQ Composite Index. The skewness 

and kurtosis for all the return series indicate the evidence of empirical distributions with 

 



heavy tails relative to the normal distribution. Also the results of the ARCH test for the 

residuals, generated by fitting an ARMA (1,1) model to all the three return series of both 

the indices, signify the presence of ARCH effect for all the return specifications of both 

the indices. 

 

(insert table 1) 

 

Figure 2 shows the wavelet decompositions of the stock returns of the Sensex and the 

NASDAQ by using Haar wavelets. Both the Haar and Symlet 8 wavelets are used in this 

study.3 Although the Haar wavelet has good properties such as simplicity, orthonormality 

and compact support, the Symlet 8 wavelet is a better approximation to an ideal band 

pass filter with symmetric properties. The wavelet decomposition results are arranged 

into level 1 to level 5, where the last one represents the low pass coefficients of level 5. 

As discussed earlier initial level or fine scale coefficients filter out the high frequency 

fluctuations by looking at the adjacent differences in the data series. As we go further, the 

higher levels of wavelet coefficients become smooth and represent the low frequency 

fluctuations in the series. The highly volatile movements in stock returns are clearly 

depicted in high frequency fluctuations as shown in d1 and d2. This analysis clearly 

indicates the usefulness of the time-scale decompositions and multi-scale nature of the 

wavelets. In the stock market, there are traders who take a very long-term view and 

consequently concentrate on what are termed ‘market fundamentals’; these traders ignore 

short-term phenomena. For them, the high level or coarse scale wavelet coefficients are 

very useful and they are more concerned about the same. In contrast, other traders are 

trading on a much shorter time-scale and as such are interested in temporary deviations of 

the market from its long-term path. Their decisions have a time horizon of a few months 

to a year; so they are interested in middle level wavelet decompositions of the return 

series. And yet for some other traders in the market, a day is a long time and 

consequently concentrate on day-by-day fluctuations. Therefore, low level or fine scale 

wavelet coefficients of return series are more useful for them in stock market. 

                                                           
3 The Symlet 8  wavelet decomposition graphs are not presented here but will be available on request. 

 



 

(insert figure 2(A) and 2(B)) 

 

As discussed earlier, to examine the spillovers between two stock markets, we need to 

relate the high frequency fluctuations in stock returns i.e., the abnormal stock returns that 

are not predicted on the basis of all information reflected in past returns. As the fine scale 

wavelet coefficients are good at representing the high frequency fluctuations, we use the 

reconstructed return series from the finest scale (d1) of wavelet decompositions. Table 2 

provides the summary statistics for the reconstructed stock returns. The most interesting 

finding is that the mean is zero in case of the Haar wavelet and very near to zero in case 

of the Symlet wavelet. Though all measures of dispersion are indicative of evidence 

against normal distribution but they are lesser in extent than the original returns. All the 

series are of stationary in nature as evident from the Augmented Dickey-Fuller (ADF) 

test at 5% and 1% levels of significance. 

 

(insert table 2) 

 

Table 3 reports the pair wise correlations of the wavelet returns of the Sensex and the 

NASDAQ. The correlations of the wavelet returns reflect the degree to which new 

information producing an abnormal return in one market is shared by the other market. 

Broadly speaking, the correlations between overnight returns and daytime returns pairs 

are higher than the other pairs. However, the pair wise correlations between daytime 

returns are very low and show wrong signs. The correlations between close-to-close 

returns between two markets show a little better performance than daytime returns 

correlations.  

 

(insert table 3 and 4) 

 

 



The correlation between two series does not indicate any causation. So we use Granger 

(1969) test to examine the causality between the Sensex and the NASDAQ Composite 

Index. Table 4 reports that the F-statistics is significant in two cases. First, the past values 

of the NASDAQ daytime returns help to predict current changes in the Sensex overnight 

returns but not the other way round. Second, there is also causality from the NASDAQ 

close-to-close returns to the Sensex close-to-close returns. This suggests a unidirectional 

causality running from the NASDAQ returns to the Sensex returns. Given this 

preliminary analysis of correlations and the Granger causality, we decide to use two pairs 

for further regression analysis. The regression analysis pairs are the NASDAQ daytime 

returns (t-1) fluctuations on the Sensex overnight returns (t) and the NASDAQ close-to-

close returns (t-1) fluctuations on the Sensex close-to-close returns (t). 

 

Table 5 provides the coefficient estimates from a sequence of least squares regressions 

using finest scale returns obtained from wavelet decompositions. The pairs of regression 

analysis have been fixed keeping in mind that if one stock market is causally prior to 

other market, the price movements of the influential market should affect subsequent 

price changes in other market but is not affected by price movements of other market in 

earlier period which is again supported by Granger causality test. Note that these daily 

rates of returns on a given calendar day may represent returns realized over different time 

intervals depending on holiday and trading day schedules. To account for this problem of 

multiple day returns associated with weekends and holidays, we use the multiple day 

return dummy in our regression analysis.  

 

(insert table 5) 

To see if the NASDAQ market movements explain the Sensex prices, we estimate the 

regressions where the NASDAQ wavelet returns of one-day lag enter as the independent 

variable. The estimates of the slope coefficient of the NASDAQ daytime returns turn out 

to be significant at 5 and 1 percent significance levels in case of Haar and Symlet 

wavelets respectively. However, the significance of the slope coefficients from Haar and 

symlet wavelets differs in case of the NASDAQ close-to-close returns. There is 

 



significant evidence of spillover effects from the NASDAQ close-to-close returns to the 

Sensex close-to-close returns in case of Symlet wavelet, but it is not the case with Haar 

wavelet. Thus, it is found from these results that the innovations in the NASDAQ 

spillover to BSE. Again, this is in agreement with the earlier findings that innovations in 

the U.S. stock markets are transmitted to other markets. Since strong evidences are found 

that Indian stock markets are influenced by the U.S. stock markets in both the cases of 

close-to-close and open-to-close returns, the information generated in the U.S. market 

may be used to trade profitably in India.  

 

(insert table 6) 

 

In this section, we examine the impact of unexpected movements in stock price volatility 

in the U.S. market on its Indian counterpart. In spillover literature, GARCH-type models 

have been used to explain the movements in volatility by estimating conditional variance. 

But in this study, we use wavelet decompositions to derive such unexpected changes in 

stock price volatility. It may be noted that we have used the GARCH model to estimate 

the conditional volatility during the study period (see appendix for details on the GARCH 

model employed).4  Based on the way similar to price spillovers, we estimate the 

regression coefficients using finest scale wavelet volatility series obtained from wavelet 

decompositions.5 Since the multiple day return dummy is used in GARCH model while 

extracting conditional volatility series, it is not incorporated in regression analysis of 

volatility spillovers. As shown in Table 6, the coefficients of the least square regressions 

in all cases are not significant. Such a finding of no volatility spillover effects from the 

U.S. stock market to its Indian counterpart is in line with the earlier findings that 

unexpected changes in stock price volatility in the U.S. market do not lead to subsequent 

changes in volatility in India (Choudhry, 2004; Kaur, 2004). However, this is not 

consistent with the studies undertaken by Kumar and Mukhopadyay (2002) who have 

                                                           
4 The GARCH results are suppressed here due to the space constraint. The results, however, can be obtained from the 
author upon request. 
5 Wavelet decomposition analysis of conditional variance series is not reported here and can be obtained from the 
corresponding author on request. 

 



reported significant and one way volatility spillover from the NASDAQ to the National 

Stock Exchange (NSE). This could be partly due to the fact that while they have 

considered the NSE Nifty Index, we have used the BSE Sensex. If the volatility spillover 

existed at the aggregate market level, it should have got reflections at the BSE Sensex 

also. This is due to the fact that almost all the Sensex stocks are and have been part of the 

NSE Nifty portfolio but not vice-versa. This might also be due to the fact that information 

from the U.S. market are efficiently and uniformly reflected in the price series but do not 

act as the source of volatility in Indian stock markets. However, more research is required 

to unravel the true nature of the ‘volatility spillover effect’ between the U.S. and Indian 

stock markets.   

 

5. CONCLUDING REMARKS 
 
This paper has attempted to examine the price and volatility spillovers between the U.S. 

and Indian stock markets. By relating the high-frequency fluctuations in stock returns, 

obtained from wavelet decompositions, we examine spillover effects of innovations 

between these stock markets. The price spillover effect is unidirectional from the U.S. 

market to its Indian counterpart as evidenced from the Granger causality and the 

regression analysis of returns. But there is insufficient evidence to find any volatility 

spillover effect between these two markets from regression analysis of wavelet returns. In 

particular, we find the price spillover effect from the NASDAQ daytime returns to the 

Sensex overnight returns. Second, the NASDAQ close-to-close returns also have an 

impact on the Sensex close-to-close returns as evidenced from the Symlet 8 wavelet 

returns. However, there is no empirical support regarding the transmission of stock price 

volatility between these two markets. Finally, it is suggested that while there is 

significant price spillover effects between the U.S. and Indian stock markets, the study 

falls short of supporting the volatility spillover effect.  
 

Appendix 

As it is already outlined above, the study intends to estimate the conditional volatility in a 

GARCH setup, instead of using squared return as the proxy for volatility. In this study we have 

 



consistently used the ARMA (1,1) – GARCH (1,1) model to explain the volatility dynamics.6 The 

specifications for our study is as thus: 

tttt uDbRaaR ++++= −− 111110 δε                     (A1) 

                                                         (A2) 1
2

1 −− ++= ttt huh βαω

 where, ω > 0, α ≥ β,  ≥ 0 and D1 is the multiple day return dummy. 

The first equation shows the ARMA (1,1) specification for the return series whereas GARCH 

(1,1) volatility specification is given by the second equation. The non-negativity constraints are 

quite important, as they are required to be met in order to ensure positivety of variance. Besides, 

the sum of parameters (α+β) must be less than unity as the volatility is found to be mean 

reverting in nature which in other words ensures the stability of the model. The GARCH (1,1) 

model is estimated by using BHHH algorithm and the estimated GARCH models for both the 

indices are found to obey the coefficient restrictions as well as the sum of (α+β) is less than unity 

in all the cases. Besides, we also carry out the LM test on squared residuals after fitting the 

GARCH model and the result evidences presence of no ARCH effect in the GARCH residuals, 

which highlights on the adequacy of the fitted model. We use thus fitted GARCH model to extract 

the conditional volatility series for both the indices as well as for all the variants of return 

specification, which are used as the estimated volatility for further wavelet analysis.   

                                                           
6 GARCH (1,1) has been found as the most parsimonious as well as adequate representation of volatility dynamics. 
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Table 1: Summary Statistics of Daily Returns on BSE Sensex and NASDAQ 
Composite Index 
Summary Statistics SOR SDR SCR NOR NDR NCR 
Mean 0.082 -0.068 0.014 0.049 -0.043 0.005 
Standard Deviation 0.499 0.675 0.745 0.539 0.894 1.027 
Skewness -2.737** -0.275** -0.420** -1.164** 0.357** 0.113** 
Kurtosis 43.272* 5.188* 7.378* 15.805* 6.158* 4.488* 
Raw Return Correlation       
Lag 1 0.087*** -0.040 0.058** -0.102* -0.046 0.011* 

Lag 2 0.063** 0.011 0.014** -0.107* -0.078* -0.042** 
LB (6) 24.331* 18.149* 11.643*** 22.708* 15.246* 6.454 
LB (12) 63.286* 27.544* 17.139 49.861* 38.786* 24.686* 
ARCH (4) LM test 23.065* 158.029* 45.064* 21.515* 67.551* 60.484* 
Note: SOR = Sensex overnight return, SDR = Sensex daytime return, SCR = Sensex close return, NOR = NASDAQ 
overnight return, NDR = NASDAQ daytime return, NCR = NASDAQ close return. 
1. *, ** and *** represent the level of significance at 1%, 5% and 10% respectively.  
2. LB (k) represents the Ljung-Box test statistics for serial correlation at ‘k’ lags.  
3. LM statistics represents the Lagrange Multiplier test, with the null hypothesis that ‘ARCH effects are not  

present in the first 4 lags’.  
4. LM test is done for residuals generated after fitting an ARMA (1,1) model to the return series 
 

 

Table 2: Summary Statistics of Returns Reconstructed using Wavelets 

Haar  
 Mean Std. Dev. Skewness Kurtosis ADF Statistic 
SOR 0.0000 0.3368 0.0000 27.0338 -25.5081 
SDR 0.0000 0.4879 0.0000 7.0702 -25.4670 
SCR 0.0000 0.5146 0.0000 7.0158 -25.7277 
NOR 0.0000 0.4083 0.0000 11.1129 -24.2653 
NDR 0.0000 0.6574 0.0000 9.1414 -28.0016 
NCR 0.0000 0.7298 0.0000 5.7253 -27.8430 
Symlet 8 
SOR 0.0000 0.3403 -1.4323 30.8914 -48.1300 
SDR 0.0005 0.4826 0.3088 7.1730 -48.3933 
SCR 0.0006 0.5159 -0.0740 7.2705 -49.3162 
NOR 0.0000 0.4108 -0.7301 15.1950 -47.0262 
NDR 0.0006 0.6681 0.5750 9.4772 -47.7922 
NCR 0.0006 0.7294 0.4358 5.9850 -46.6272 

Note: SOR = Sensex overnight return, SDR = Sensex daytime return, SCR = Sensex close return, NOR = NASDAQ 
overnight return, NDR = NASDAQ daytime return, NCR = NASDAQ close return. The critical values for ADF unit 
root test at 1%, and 5% levels are -3.51 and -2.89 respectively.  
 

 



Table 3: Pair Wise Correlations of Returns Reconstructed using Wavelets 
 Haar Symlet 8 
SOR-NDR (1) 0.1493 0.2815 
NOR-SDR 0.1843 0.1727 
SDR-NDR (1) -0.0116 -0.0234 
NDR-SDR -0.0289 0.0201 
SCR-NCR (1) 0.0414 0.1026 
NCR-SCR -0.0326 -0.0213 
Note: SOR = Sensex overnight return, SDR = Sensex daytime return, SCR = Sensex close return, NOR = NASDAQ 
overnight return, NDR = NASDAQ daytime return, NCR = NASDAQ close return. (1) represents returns at one period 
lag.  
 
 
Table 4: Granger Causality Tests of Returns Reconstructed using Wavelets 
  Haar Symlet 8 
Cause Effect F-statistic P-value F-statistic P-value 
NDR (1) SOR 5.2807 0.0000 12.1730 0.0000 
SDR NOR 0.4738 0.8282 1.6867 0.1207 
NDR (1) SDR 1.3321 0.2396 0.8579 0.5253 
SDR NDR 1.3155 0.2470 0.4945 0.8127 
NCR (1) SCR 1.2916 0.2579 3.0232 0.0061 
SCR NCR 0.2849 0.9443 0.9678 0.4458 
Note: SOR = Sensex overnight return, SDR = Sensex daytime return, SCR = Sensex close return, NOR = NASDAQ 
overnight return, NDR = NASDAQ daytime return, NCR = NASDAQ close return. (1) represents returns at one period 
lag. 
 
 
Table 5: Regression Results of Returns Reconstructed using Wavelets 
 Haar Symlet 8 
 SOR SCR SOR SCR 
NDR (1) 0.0262 

(0.0570) 
 0.1049 

(0.0000) 
 

NCR (1)  0.0090 
(0.5920) 

 0.0538 
(0.0129) 

Dummy 0.0723 
(0.0001) 

0.0295 
(0.3322) 

0.0449 
(0.0064) 

0.0491 
(0.0599) 

R-squared 0.2653 0.2441 0.4053 0.3528 
D-W Statistic 2.3162 2.3318 2.3129 2.3975 
Note: SOR = Sensex overnight return, SDR = Sensex daytime return, SCR = Sensex close return, NOR = NASDAQ 
overnight return, NDR = NASDAQ daytime return, NCR = NASDAQ close return.  (1) represents returns at one period 
lag and figures in parentheses represent P-values. D-W statistic represents Durbin-Watson Statistic.  
 
 
Table 6: Regression Results of Volatility Reconstructed using Wavelets 
 Haar Symlet 8 
 SORVOLT SCRVOLT SORVOLT SCRVOLT 
NDRVOLT (1) -0.0810 

(0.8007) 
 0.2292 

(0.4586) 
 

NCRVOLT (1)  0.0056 
(0.7936) 

 0.1021 
(0.2304) 

R-squared 0.1599 0.1875 0.2118 0.2059 
D-W Statistic 2.3426 2.3319 2.3049 2.3928 
Note: SORVOLT = Sensex overnight return volatility, SCRVOLT = Sensex close return volatility, NDRVOLT = 
NASDAQ daytime return volatility, NCRVOLT = NASDAQ close return volatility. (1) represents returns at one period 
lag and figures in parentheses represent P-values. D-W statistic represents Durbin-Watson Statistic. 

 



 
 
Figure 1: BSE Sensex vs. NASDAQ Composite Index 
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Figure 2 (A) : Wavelet Decompositions of Sensex Returns Series 
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Figure 2 (B) : Wavelet Decompositions of NASDAQ Composite Returns Series 
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